

MOS INTEGRATED CIRCUIT $\mu PD16647$

402/384-OUTPUT TFT-LCD SOURCE DRIVER (64-GRAY SCALES)

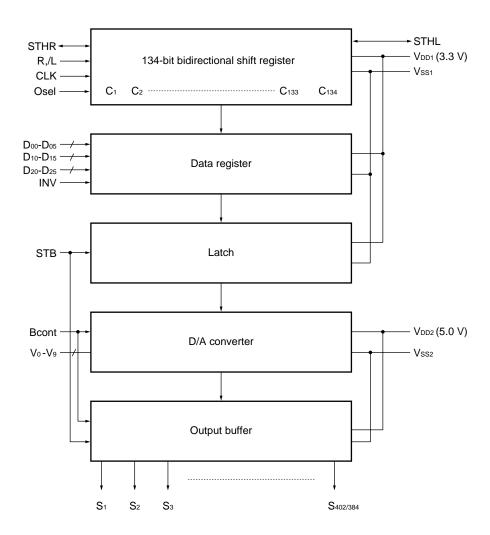
DESCRIPTION

The μ PD16647 is a source driver for TFT-LCD 64-gray-scale display. Its logic circuit operates at 3.3 V and the driver circuit operates at 5.0 V. The input data is digital data at 6 bits x 3 dots, and 260,000 colors can be displayed in 64-value

 \star outputs γ -corrected by the internal D/A converter and 10 external power supplies. The clock frequency is 50 MHz MAX. μ PD16647 can be used in TFT-LCD panels conforming to the SVGA standards.

FEATURES

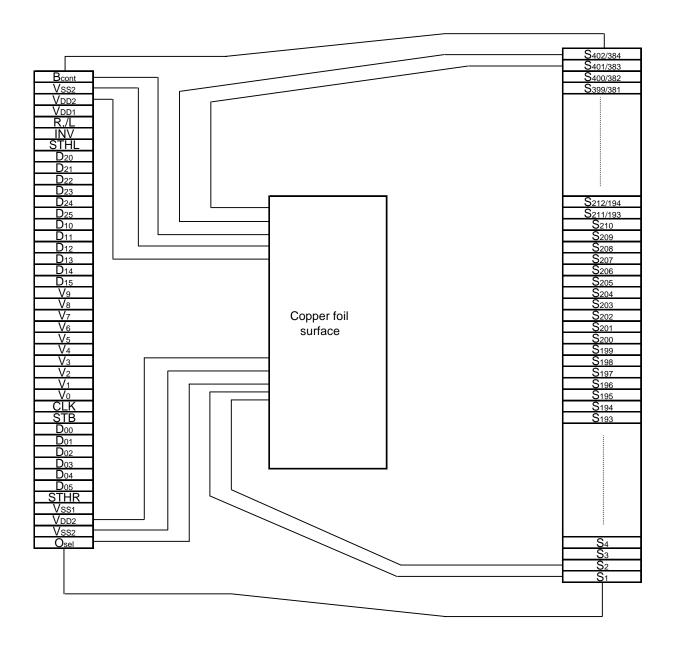
- CMOS level input
- 402/384 outputs
- 6 bits (gray scale data) x 3 dots input
- 64-value output by 10 external power supplies and internal D/A converter
- Output dynamic range: Vss2 + 0.1 V to Vdd2 0.1 V
- ★ High-speed data transfer: fclk = 50 MHz MAX. (internal data transfer rate at supply voltage Vpp1 of logic circuit = 3.0 V)
 - Level of γ -corrected power supply can be inverted
 - Precharge-less output buffer
 - Input data inversion function (INV)
 - Logic supply voltage (V_{DD1}): $3.3 \text{ V} \pm 0.3 \text{ V}$
 - \bullet Driver supply voltage (VDD2): 5.0 V \pm 0.5 V
 - Slim TCP
- ★ Current consumption reduction function (Bcont)


ORDERING INFORMATION

Part Number	Package
μ PD16647N-xxx	TCP (TAB package)

★ Remark The TCP's external shape is customized. To order the required shape, please contact one of our sales representatives.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.


1. BLOCK DIAGRAM

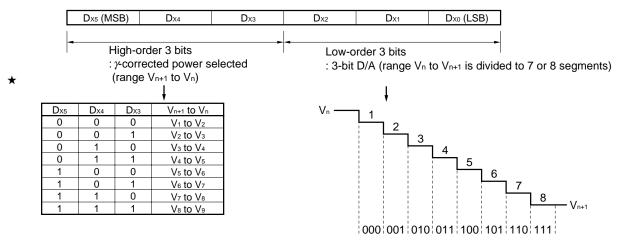
Remark /xxx indicates active low signal.

★ 2. PIN CONFIGURATION (Top view of copper foil surface, Face-up)

 μ PD16647N-xxx: TCP (TAB package)

Remark This figure does not specify the TCP package.

3. PIN DESCRIPTION


	Pin Symbol	Pin Name	I/O	Description
	S ₁ to S _{402/384}	Driver output	0	Output 64 gray-scale analog voltages converted from digital signals. Osel = H or open: 402 outputs (S ₁ to S _{402/384}) Osel = L : 384 outputs (S ₁ to S ₁₉₂ , S _{211/193} to S _{402/384}) S ₁₉₃ to S ₂₁₀ outputs are invalid in 384 outputs.
*	D ₀₀ to D ₀₅	Display data input	I	Inputs 18-bit-wide display gray scale data (6 bits) x 3 dots.
	D ₁₀ to D ₁₅			Dx ₀ : LSB, Dx ₅ : MSB
	D ₂₀ to D ₂₅			
*	R, /L	Shift direction control input	I	Shift direction control pins. The shift directions are as follows. R, $/L = H$: STHR input, $S_1 \rightarrow S_{402}$, STHL output R, $/L = L$: STHL input, $S_{402} \rightarrow S_1$, STHR output
*	STHR	Right shift start pulse I/O	I/O	This is the start pulse I/O pin when connected in cascade. Loading of display data starts when a high level is read at 1clock after from rising edge of CLK.
	STHL	Left shift start pulse I/O		For right shift, STHR is input and STHL is output. For left shift, STHL is input and STHR is output.
*	Bcont	Bias control	I	This pin can be used to finely control the bias current inside the output amplifier. In cases when fine-control is necessary, connect this pin to V_{DD2} using a resistor of 10 to 100 k Ω (per IC). When this fine-control function is not required, short-circuit this pin to V_{DD2} . Refer to 7. CURRENT CONSUMPTION REDUCTION FUNCTION.
*	CLK	Shift clock input	I	Inputs shift clock to shift register. Display data is loaded to data register at rising edge of this pin (value in parentheses is for 384 outputs). Start pulse output goes high at rising edge of 134 (128) th clock after start pulse has been input, and serves as start pulse to driver in next stage. 134 (128) th clock of driver in first stage serves as start pulse of driver in next stage.
	STB	Latch input	I	Contents of data register are latched at rising edge, transferred to D/A converter, and output as analog voltage corresponding to display data. Contents of internal shift register are cleared after STB has been input. One pulse of this signal is input when μ PD16647 is started, and then device operates normally. For STB input timing, refer to 8. ELECTRICAL SPECIFICATIONS SWITCHING CHARACTERISTICS WAVEFORM.
	Osel	Selection of number of outputs	I	Selects number of outputs. This pin is internally pulled up to V _{DD1} . Osel = H or open: 402 outputs (S ₁ to S _{402/384}) Osel = L: 384 outputs (S ₁ to S ₁₉₂ , S _{211/193} to S _{402/384})
	V ₀ to V ₉	γ-corrected power supply	-	Inputs γ -corrected power from external source. Vss2 \leq V9 \leq V8 \leq V7 \leq V6 \leq V5 \leq V4 \leq V3 \leq V2 \leq V1 \leq V0 \leq VDD2 or Vss2 \leq V0 \leq V1 \leq V2 \leq V3 \leq V4 \leq V5 \leq V6 \leq V7 \leq V8 \leq V9 \leq VDD2 Maintain gray scale power supply during gray scale voltage output.
	INV	Data inversion input	I	Input data can be inverted when display data is loaded. INV = H : Inverts and loads input data. INV = L : Does not invert input data.
	V _{DD1}	Logic circuit power supply	-	$3.3~\text{V}\pm0.3~\text{V}$
	V _{DD2}	Driver circuit power supply	-	5.0 V ± 0.5 V
	Vss1	Logic ground	=	Ground
	Vss2	Driver ground	_	Ground

Caution Be sure to turn on power in the order V_{DD1} , logic input, V_{DD2} , and gray scale power (V_0 to V_9), and turn off power in the reverse order, to prevent the μ PD16647 from being damaged by latch-up. Be sure to observe this power sequence even during a transition period.

4. RELATION BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

The 10 major points on the γ -characteristic curve of the LCD panel are arbitrarily set by external power supplies V₀ through V₉. If the display data is 00H or 3FH, gray-scale voltage V₀ or V₉ is output. If the display data is in the range 01H to 3EH, the high-order 3 bits select an external power pair V_{n+1}, V_n. The low-order 3 bits evenly divide the range of V_{n+1} to V_n into eight segments by means of D/A conversion (however, the ranges from V₈ to V₇ and from V₁ to V₀ are divided into seven segments) to output a 64-gray-scale voltage.

* Figure 4-1. Relationship between Input Data and γ-corrected Power Supplies

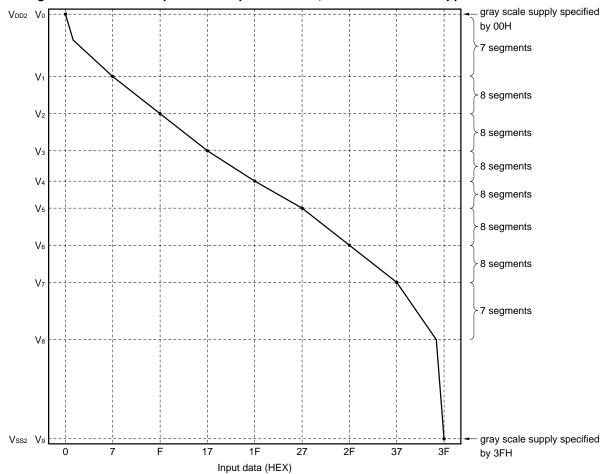


Table 4-1. Relationship between Input Data and Output Voltage

Input Data	D _{X5}	Dx4	Dxз	Dx2	Dx1	Dxo	Output Voltage
00H	0	0	0	0	0	0	V ₀
01H	0	0	0	0	0	1	$V_1 + (V_0 - V_1) \times 6/7$
02H	0	0	0	0	1	0	$V_1 + (V_0 - V_1) \times 5/7$
03H	0	0	0	0	1	1	$V_1 + (V_0 - V_1) \times 4/7$
04H	0	0	0	1	0	0	$V_1 + (V_0 - V_1) \times 3/7$
05H	0	0	0	1	0	1	$V_1 + (V_0 - V_1) \times 2/7$
06H	0	0	0	1	1	0	$V_1 + (V_0 - V_1) \times 1/7$
07H	0	0	0	1	1	1	V ₁
08H	0	0	1	0	0	0	$V_2 + (V_1 - V_2) \times 7/8$ $V_2 + (V_1 - V_2) \times 6/8$
09H 0AH	0	0	1	0	0	0	$V_2 + (V_1 - V_2) \times 5/8$ $V_2 + (V_1 - V_2) \times 5/8$
0BH	0	0	1	0	1	1	$V_2 + (V_1 - V_2) \times 4/8$
0CH	0	0	1	1	0	0	$V_2 + (V_1 - V_2) \times 3/8$
0DH	0	0	1	1	0	1	$V_2 + (V_1 - V_2) \times 2/8$
0EH	0	0	1	1	1	0	$V_2 + (V_1 - V_2) \times 1/8$
0FH	0	0	1	1	1	1	V ₂
10H	0	1	0	0	0	0	$V_3 + (V_2 - V_3) \times 7/8$
11H	0	1	0	0	0	1	$V_3 + (V_2 - V_3) \times 6/8$
12H	0	1	0	0	1	0	V ₃ + (V ₂ - V ₃) × 5/8
13H	0	1	0	0	1	1	$V_3 + (V_2 - V_3) \times 4/8$
14H	0	1	0	1	0	0	$V_3 + (V_2 - V_3) \times 3/8$
15H	0	1	0	1	0	1	$V_3 + (V_2 - V_3) \times 2/8$
16H	0	1	0	1	1	0	$V_3 + (V_2 - V_3) \times 1/8$
17H	0	1	0	1	0	0	V_3 $V_4 + (V_3 - V_4) \times 7/8$
18H 19H	0	1	1	0	0	1	$V_4 + (V_3 - V_4) \times 7/8$ $V_4 + (V_3 - V_4) \times 6/8$
19H 1AH	0	1	1	0	1	0	$V_4 + (V_3 - V_4) \times 5/8$ $V_4 + (V_3 - V_4) \times 5/8$
1BH	0	1	1	0	1	1	$V_4 + (V_3 - V_4) \times 4/8$
1CH	0	1	1	1	0	0	$V_4 + (V_3 - V_4) \times 3/8$
1DH	0	1	1	1	0	1	$V_4 + (V_3 - V_4) \times 2/8$
1EH	0	1	1	1	1	0	$V_4 + (V_3 - V_4) \times 1/8$
1FH	0	1	1	1	1	1	V ₄
20H	1	0	0	0	0	0	$V_5 + (V_4 - V_5) \times 7/8$
21H	1	0	0	0	0	1	$V_5 + (V_4 - V_5) \times 6/8$
22H	1	0	0	0	1	0	$V_5 + (V_4 - V_5) \times 5/8$
23H	1	0	0	0	1	1	$V_5 + (V_4 - V_5) \times 4/8$
24H	1	0	0	1	0	0	$V_5 + (V_4 - V_5) \times 3/8$
25H	1	0	0	1	0	1	$V_5 + (V_4 - V_5) \times 2/8$
26H	1	0	0	1	1	0	$V_5 + (V_4 - V_5) \times 1/8$
27H 28H	1	0	1	0	0	0	$V_6 + (V_5 - V_6) \times 7/8$
29H	1	0	1	0	0	1	$V_6 + (V_5 - V_6) \times 6/8$
2AH	1	0	1	0	1	0	$V_6 + (V_5 - V_6) \times 5/8$
2BH	1	0	1	0	1	1	$V_6 + (V_5 - V_6) \times 4/8$
2CH	1	0	1	1	0	0	V ₆ + (V ₅ – V ₆) × 3/8
2DH	1	0	1	1	0	1	$V_6 + (V_5 - V_6) \times 2/8$
2EH	1	0	1	1	1	0	$V_6 + (V_5 - V_6) \times 1/8$
2FH	1	0	1	1	1	1	V ₆
30H	1	1	0	0	0	0	$V_7 + (V_6 - V_7) \times 7/8$
31H	1	1	0	0	0	1	$V_7 + (V_6 - V_7) \times 6/8$
32H	1	1	0	0	1	0	$V_7 + (V_6 - V_7) \times 5/8$
33H	1	1	0	0	1	1	$V_7 + (V_6 - V_7) \times 4/8$ $V_7 + (V_6 - V_7) \times 3/8$
34H 35H	1	1	0	1	0	1	$V_7 + (V_6 - V_7) \times 3/8$ $V_7 + (V_6 - V_7) \times 2/8$
35H 36H	1	1	0	1	1	0	$V_7 + (V_6 - V_7) \times 2/8$ $V_7 + (V_6 - V_7) \times 1/8$
37H	1	1	0	1	1	1	V7 1 (V6 V7) × 170
38H	1	1	1	0	0	0	$V_8 + (V_7 - V_8) \times 6/7$
39H	1	1	1	0	0	1	$V_8 + (V_7 - V_8) \times 5/7$
3AH	1	1	1	0	1	0	$V_8 + (V_7 - V_8) \times 4/7$
3BH	1	1	1	0	1	1	V ₈ + (V ₇ - V ₈) × 3/7
3CH	1	1	1	1	0	0	$V_8 + (V_7 - V_8) \times 2/7$
3DH	1	1	1	1	0	1	$V_8 + (V_7 - V_8) \times 1/7$
JUH							
3EH 3FH	1	1	1	1	1	0	V8 V9

4.1 γ-Corrected Power Circuit

The reference power supply of the D/A converter consists of a ladder circuit with a total of 64 resistors, and resistance Σ ri between γ -corrected power pins differs depending on each pair of γ -corrected power pins. One pair of γ -corrected power pins consists of seven or eight series resistors, and resistance Σri in the figure below is indicated as the sum of the seven or eight resistors. The resistance ratio between the γ -corrected power pins (Σ ri ratio) is designed to be a value relatively close to the ratio of the γ-corrected voltages V₁ through V₈ (gray scale voltages in 7 steps) used in an actual LCD panel. Under ideal conditions where there is no difference between the two, therefore, there is no voltage difference between the voltage of the γ -corrected power supplies and the gray scale voltages in 7 steps of the resistor ladder circuits of the μ PD16647, and no current flows into the γ -corrected power pins V₁ through V₈. As a result, a voltage follower circuit is not necessary.

 γ -corrected power pin γ -corrected resistor μPD16647 V٥ R₀: 1.98 k $\Omega = \Sigma r_i$ V₁ R₁: 1.72 k Ω = Σ r_i V2 Sum of eight R₂: 0.86 k $\Omega = \Sigma r_i$ γ -corrected resistors Vз R₃: 0.99 k $\Omega = \Sigma$ r_i V4 R4: $0.73 \text{ k}\Omega = \Sigma \text{ ri}$ V5 R₅: 0.79 kΩ V₆ R₆: 1.06 $k\Omega$ V7 R₇: 1.58 k $\Omega = \Sigma$ r Vв R₈: 6.28 kΩ V₉

Figure 4-2. γ -Corrected Power Circuit

5. RELATION BETWEEN INPUT DATA AND OUTPUT VOLTAGE

Data format : 6 bits x RGB (3 dots) Input width : 18 bits (1 pixel data)

(1) $R_{1}/L = H$ (right shift)

Output	S ₁	S ₂	S ₃	S ₄	 S401/383	S402/384
Data	D ₀₀ to D ₀₅	D ₁₀ to D ₁₅	D ₂₀ to D ₂₅	D ₀₀ to D ₀₅	 D ₁₀ to D ₁₅	D ₂₀ to D ₂₅

(2) $R_{,}/L = L$ (left shift)

Output	S ₁	S ₂	S₃	S ₄	 S401/383	S402/384
Data	D ₀₀ to D ₀₅	D ₁₀ to D ₁₅	D ₂₀ to D ₂₅	D ₀₀ to D ₀₅	 D ₁₀ to D ₁₅	D ₂₀ to D ₂₅

6. OPERATION OF OUTPUT BUFFER

The output buffer consists of an operational amplifier circuit that does not perform precharge operation. Therefore, driver output current IvoH1/2 is the charging current to the LCD, and IvoL1/2 is the discharging current.

Sn Vss2 Write (IvoL1/2/IvoH1/2) Write (IvoL1/2/IvoH1/2)

Figure 6-1. LCD panel driving waveform of μ PD16647

★ 7. CURRENT CONSUMPTION REDUCTION FUNCTION

It is possible to fine-control the bias current of the output amplifier (Static current consumption) by using the bias current control function (Bcont pin). When using this function, connect this pin to the stabilized V_{DD2} potential using an external resistor (Rext). When not using this function, however, short-circuit this pin to V_{DD2}.

μPD16647

Bcont

REXT

Figure 7-1. Bias Current Control Function/Bcont

Refer to the table below for the percentage of current regulation compare to normal mode, when using the bias current control function.

Vpp2

Table 7-1. Current Consumption Regulation Percentage Compared to Normal Mode (VDD1 = 3.3 V, VDD2 = 5 V)

Rext (kΩ)	Current Consumption Regulation Percentage (%)
Short-circuit	100
10	95
20	91
40	85
80	79

Remark Be aware that the above current consumption regulation percentages are not product-characteristic guaranteed as they are based on the results of simulation.

Caution Because the bias-current control functions control the bias current in the output amplifier and regulate the over-all current consumption of the driver IC, when this occurs, the characteristics of the output amplifier will simultaneously change. Therefore, when using these functions, be sure to sufficiently evaluate the picture quality.

8. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (Vss1 = Vss2 = 0 V)

Parameter	Symbol	Ratings	Unit
Logic Supply Voltage	V _{DD1}	-0.3 to +4.5	V
Driver Supply Voltage	V _{DD2}	-0.3 to +6.0	V
Input Voltage	Vı	-0.3 to V _{DD1,2} + 0.3	V
Output Voltage	Vo	-0.3 to V _{DD1,2} + 0.3	V
Operating Ambient Temperature	TA	-10 to +75	°C
Storage Temperature	T _{stg}	-55 to +125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Range ($T_A = -10 \text{ to } +75^{\circ}\text{C}$, $V_{SS1} = V_{SS2} = 0 \text{ V}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Logic Supply Voltage	V _{DD1}	3.0	3.3	3.6	V
Driver Supply Voltage	V _{DD2}	4.5	5.0	5.5	V
High-level Input Voltage	ViH	0.7 V _{DD1}		V _{DD1}	V
Low-level Input Voltage	VIL	0		0.3 V _{DD1}	V
γ -corrected Supply Voltage	V ₀ to V ₉	Vss2 + 0.1		V _{DD2} - 0.1	V
Clock Frequency	fcLK			50	MHz

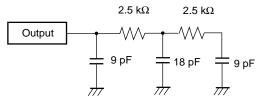
 \star

Electrical Characteristics (TA = -10 to +75°C, VDD1 = 3.3 V \pm 0.3 V, VDD2 = 5.0 V \pm 0.5 V, Vss1 = Vss2 = 0 V, Short-circuit Bcont to VDD2)

Parameter	Symbol	Condition	on	MIN.	TYP.	MAX.	Unit
Input Leakage Current	lı∟	D ₀₀ to D ₀₅ , D ₁₀ to D ₁₅ , D ₂₀ to D ₂₅ , R ₁ /L, STB				±1.0	μΑ
Pull-up Resistor	Rpu	V _{DD1} = 3.3 V		40	100	250	kΩ
High-level Output Voltage	Vон	STHR (STHL), lo	= -1.0 mA	V _{DD1} – 0.5			V
Low-level Output Voltage	Vol	STHR (STHL), lo	= +1.0 mA			0.5	V
Static Current Consumption of	I _{vn1}	V _{DD1} = 3.3 V,	Vo to V1	126	253	506	μΑ
γ -corrected Power		$V_n \text{ to } V_{n+1} = 0.5 \text{ V}$, V1 to V2	145	291	582	μΑ
		V _{DD2} = 5.0 V	V ₂ to V ₃	289	579	1158	μΑ
			V ₃ to V ₄	252	504	1008	μΑ
			V ₄ to V ₅	343	686	1372	μΑ
			V ₅ to V ₆	315	631	1262	μΑ
			V ₆ to V ₇	237	474	948	μΑ
			V ₇ to V ₈	158	316	632	μΑ
			V ₈ to V ₉	40	80	160	μΑ
Driver Output Current	Ivoн2	Vout = 4.4 V, Vx = VDD1 = 3.3 V, VDD2		-0.12		-0.03	mA
	Ivol2	Vout = 0.6 V, Vx = VDD1 = 3.3 V, VDD2	= 0.1 V Note1,	0.04		0.16	mA
Output Voltage Deviation	ΔVο	$V_{DD1} = 3.3 \text{ V}, V_{DD2} = 5.0 \text{ V},$ $V_{OUT} = 2.5 \text{ V}$ Note1			±10	±20	mV
Output Swing Difference Deviation	ΔV _{P-P}	Input data			±5		mV
Output Voltage Range	Vo	Input data : 00H to	o 3FH	Vss2 + 0.1		V _{DD2} - 0.1	V
Dynamic Logic Current Consumption	I _{DD1}	No load, V _{DD2} = 3.	.3 V Note2		0.5	2.5	mA
Dynamic Driver Current Consumption	I _{DD2}	No load, V _{DD2} = 5.	.0 V Note2		5.0	10.0	mA

Notes 1. Vx refers to the output voltage of analog output pins S_1 to $S_{402/384}$. Vout refers to the voltage applied to analog output pins S_1 to $S_{402/384}$.

2. The STB cycle is specified at 31 μ s and fclk = 16 MHz.

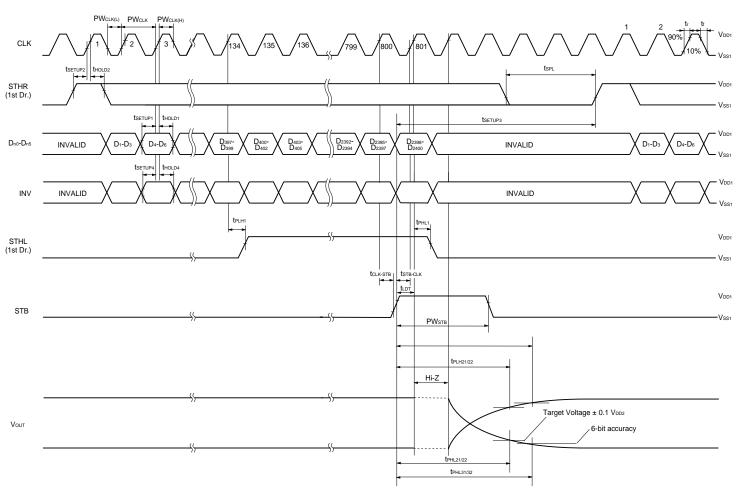

Data Sheet S13607EJ3V0DS

Switching Characteristics (TA = -10 to +75 °C, VDD1 = 3.3 V ± 0.3 V, VDD2 = 5.0 V ± 0.5 V, Vss1 = Vss2 = 0 V, Short-circuit Bcont to VDD2)

	Parameter	Symbol		Condition	MIN.	TYP.	MAX.	Unit
	Start Pulse Delay Time	t _{PLH1}	C _L = 15 pF			7	12	ns
		t _{PHL1}				7	12	ns
*	Driver Output Delay Time	tPLH2	V _{DD2} = 5.0 V,	Vout: $0.1 \rightarrow 4.9 \text{ V}^{\text{Note}}$		2.2	10	μs
		t _{PLH3}	5 kΩ +36 pF			2.9	12	μs
k		tPHL2		Vout: $4.9 \rightarrow 0.1 \text{ V}^{\text{Note}}$		2.6	10	μs
		t _{PHL3}				3.6	12	μs
Ł	Input Capacitance	Cı1	STHR (STHL),	T _A = 25°C		10	15	pF
		C ₁₂	Vo to V9, TA = 25	V ₀ to V ₉ , T _A = 25°C		100	150	pF
*		Сіз	Input pins are ex	xcept STHR (STHL), and V_0 to		10	15	pF

[★] Note Vout refers to the voltage applied to analog output pins S₁ to S₄02/384.

<Output Load>



Timing Requirements (TA = -10 to +75°C, VDD1 = 3.3 V \pm 0.3 V, VDD2 = 5.0 V \pm 0.5 V, Vss1 = Vss2 = 0 V)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock Pulse Width	PWclk		20			ns
Clock High Period	PWclk (H)		4			ns
Clock Low Period	PWclk (L)		4			ns
Data Setup Time	tsetup1		4			ns
Data Hold Time	tHOLD1		0			ns
Start Pulse Setup Time	tsetup2		4			ns
Start Pulse Hold Time	tHOLD2		0			ns
INV Setup Time	tsetup4		4			ns
INV Hold Time	tHOLD4		0			ns
Start Pulse Low Period	tspl		2			CLK
STB Setup Time	tsetup3		1			CLK
STB Pulse Width	PWstb		2			CLK
Last Data Timing	t ldt				1	CLK
CLK to STB Time	tclк-sтв	$CLK \uparrow \to STB \uparrow$	7			ns
STB to CLK Time	tsтв-сцк	$STB \uparrow \rightarrow CLK \uparrow$	7			ns

SWITCHING CHARACTERISTIC WAVEFORM (R,/L = H)

Unless otherwise specified, the input level is defined to be $V_{IH} = 0.7 \text{ VdD1}$, $V_{IL} = 0.3 \text{ VdD1}$.

9. RECOMMENDED MOUNTING CONDITIONS

The following conditions must be met for mounting conditions of the μ PD16647.

For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).

Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under different conditions.

 μ PD16647N-xxx: TCP (TAB package)

Mounting Condition	Mounting Method	Condition
Thermocompression	Soldering	Heating tool 300 to 350°C, heating for 2 to 3 sec; pressure 100 g (per solder).
	ACF	Temporary bonding 70 to 100°C; pressure 3 to 8 kg/cm²; time 3 to 5 sec. Real
	(Adhesive Conductive	bonding 165 to 180°C pressure 25 to 45 kg/cm ² time 30 to 40 secs (When using
	Film)	the anisotropy conductive film SUMIZAC1003 of Sumitomo Bakelite, Ltd).

Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more mounting methods at a time.

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference Documents

NEC Semiconductor Device Reliability/Quality Control System (C10983E)

Quality Grades On NEC Semiconductor Devices (C11531E)

- The information in this document is current as of September, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).